/* $Id: setup.c,v 1.11 2003/02/01 18:57:13 jsimmons Exp $ * * linux/arch/sh/kernel/setup.c * * Copyright (C) 1999 Niibe Yutaka * */ /* * This file handles the architecture-dependent parts of initialization */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_BLK_DEV_RAM #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SH_EARLY_PRINTK #include #endif /* * Machine setup.. */ /* * Initialize loops_per_jiffy as 10000000 (1000MIPS). * This value will be used at the very early stage of serial setup. * The bigger value means no problem. */ struct sh_cpuinfo boot_cpu_data = { CPU_SH_NONE, 0, 10000000, }; struct screen_info screen_info; unsigned char aux_device_present = 0xaa; #if defined(CONFIG_SH_GENERIC) || defined(CONFIG_SH_UNKNOWN) struct sh_machine_vector sh_mv; #endif /* We need this to satisfy some external references. */ struct screen_info screen_info = { 0, 25, /* orig-x, orig-y */ 0, /* unused */ 0, /* orig-video-page */ 0, /* orig-video-mode */ 80, /* orig-video-cols */ 0,0,0, /* ega_ax, ega_bx, ega_cx */ 25, /* orig-video-lines */ 0, /* orig-video-isVGA */ 16 /* orig-video-points */ }; extern void fpu_init(void); extern int root_mountflags; extern int _text, _etext, _edata, _end; #define MV_NAME_SIZE 32 static struct sh_machine_vector* __init get_mv_byname(const char* name); /* * This is set up by the setup-routine at boot-time */ #define PARAM ((unsigned char *)empty_zero_page) #define MOUNT_ROOT_RDONLY (*(unsigned long *) (PARAM+0x000)) #define RAMDISK_FLAGS (*(unsigned long *) (PARAM+0x004)) #define ORIG_ROOT_DEV (*(unsigned long *) (PARAM+0x008)) #define LOADER_TYPE (*(unsigned long *) (PARAM+0x00c)) #define INITRD_START (*(unsigned long *) (PARAM+0x010)) #define INITRD_SIZE (*(unsigned long *) (PARAM+0x014)) /* ... */ #define COMMAND_LINE ((char *) (PARAM+0x100)) #define COMMAND_LINE_SIZE 256 #define RAMDISK_IMAGE_START_MASK 0x07FF #define RAMDISK_PROMPT_FLAG 0x8000 #define RAMDISK_LOAD_FLAG 0x4000 static char command_line[COMMAND_LINE_SIZE] = { 0, }; char saved_command_line[COMMAND_LINE_SIZE]; struct resource standard_io_resources[] = { { "dma1", 0x00, 0x1f }, { "pic1", 0x20, 0x3f }, { "timer", 0x40, 0x5f }, { "keyboard", 0x60, 0x6f }, { "dma page reg", 0x80, 0x8f }, { "pic2", 0xa0, 0xbf }, { "dma2", 0xc0, 0xdf }, { "fpu", 0xf0, 0xff } }; #define STANDARD_IO_RESOURCES (sizeof(standard_io_resources)/sizeof(struct resource)) /* System RAM - interrupted by the 640kB-1M hole */ #define code_resource (ram_resources[3]) #define data_resource (ram_resources[4]) static struct resource ram_resources[] = { { "System RAM", 0x000000, 0x09ffff, IORESOURCE_BUSY }, { "System RAM", 0x100000, 0x100000, IORESOURCE_BUSY }, { "Video RAM area", 0x0a0000, 0x0bffff }, { "Kernel code", 0x100000, 0 }, { "Kernel data", 0, 0 } }; unsigned long memory_start, memory_end; #ifdef CONFIG_SH_EARLY_PRINTK /* * Print a string through the BIOS */ static void sh_console_write(struct console *co, const char *s, unsigned count) { sh_bios_console_write(s, count); } static kdev_t sh_console_device(struct console *c) { /* /dev/null */ return mk_kdev(MEM_MAJOR, 3); } /* * Setup initial baud/bits/parity. We do two things here: * - construct a cflag setting for the first rs_open() * - initialize the serial port * Return non-zero if we didn't find a serial port. */ static int __init sh_console_setup(struct console *co, char *options) { int cflag = CREAD | HUPCL | CLOCAL; /* * Now construct a cflag setting. * TODO: this is a totally bogus cflag, as we have * no idea what serial settings the BIOS is using, or * even if its using the serial port at all. */ cflag |= B115200 | CS8 | /*no parity*/0; co->cflag = cflag; return 0; } static struct console sh_console = { .name = "bios", .write = sh_console_write, .device = sh_console_device, .setup = sh_console_setup, .flags = CON_PRINTBUFFER, .index = -1, }; void sh_console_init(void) { register_console(&sh_console); } void sh_console_unregister(void) { unregister_console(&sh_console); } #endif static inline void parse_cmdline (char ** cmdline_p, char mv_name[MV_NAME_SIZE], struct sh_machine_vector** mvp, unsigned long *mv_io_base, int *mv_mmio_enable) { char c = ' ', *to = command_line, *from = COMMAND_LINE; int len = 0; /* Save unparsed command line copy for /proc/cmdline */ memcpy(saved_command_line, COMMAND_LINE, COMMAND_LINE_SIZE); saved_command_line[COMMAND_LINE_SIZE-1] = '\0'; memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START; memory_end = memory_start + __MEMORY_SIZE; for (;;) { /* * "mem=XXX[kKmM]" defines a size of memory. */ if (c == ' ' && !memcmp(from, "mem=", 4)) { if (to != command_line) to--; { unsigned long mem_size; mem_size = memparse(from+4, &from); memory_end = memory_start + mem_size; } } if (c == ' ' && !memcmp(from, "sh_mv=", 6)) { char* mv_end; char* mv_comma; int mv_len; if (to != command_line) to--; from += 6; mv_end = strchr(from, ' '); if (mv_end == NULL) mv_end = from + strlen(from); mv_comma = strchr(from, ','); if ((mv_comma != NULL) && (mv_comma < mv_end)) { int ints[3]; get_options(mv_comma+1, ARRAY_SIZE(ints), ints); *mv_io_base = ints[1]; *mv_mmio_enable = ints[2]; mv_len = mv_comma - from; } else { mv_len = mv_end - from; } if (mv_len > (MV_NAME_SIZE-1)) mv_len = MV_NAME_SIZE-1; memcpy(mv_name, from, mv_len); mv_name[mv_len] = '\0'; from = mv_end; *mvp = get_mv_byname(mv_name); } c = *(from++); if (!c) break; if (COMMAND_LINE_SIZE <= ++len) break; *(to++) = c; } *to = '\0'; *cmdline_p = command_line; } void __init setup_arch(char **cmdline_p) { #if defined(CONFIG_SH_GENERIC) || defined(CONFIG_SH_UNKNOWN) extern struct sh_machine_vector mv_unknown; #endif struct sh_machine_vector *mv = NULL; char mv_name[MV_NAME_SIZE] = ""; unsigned long mv_io_base = 0; int mv_mmio_enable = 0; unsigned long bootmap_size; unsigned long start_pfn, max_pfn, max_low_pfn; #ifdef CONFIG_SH_EARLY_PRINTK sh_console_init(); #endif ROOT_DEV = ORIG_ROOT_DEV; #ifdef CONFIG_BLK_DEV_RAM rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK; rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0); rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0); #endif if (!MOUNT_ROOT_RDONLY) root_mountflags &= ~MS_RDONLY; init_mm.start_code = (unsigned long)&_text; init_mm.end_code = (unsigned long) &_etext; init_mm.end_data = (unsigned long) &_edata; init_mm.brk = (unsigned long) &_end; code_resource.start = virt_to_bus(&_text); code_resource.end = virt_to_bus(&_etext)-1; data_resource.start = virt_to_bus(&_etext); data_resource.end = virt_to_bus(&_edata)-1; parse_cmdline(cmdline_p, mv_name, &mv, &mv_io_base, &mv_mmio_enable); #ifdef CONFIG_SH_GENERIC if (mv == NULL) { mv = &mv_unknown; if (*mv_name != '\0') { printk("Warning: Unsupported machine %s, using unknown\n", mv_name); } } sh_mv = *mv; #endif #ifdef CONFIG_SH_UNKNOWN sh_mv = mv_unknown; #endif #if defined(CONFIG_SH_GENERIC) || defined(CONFIG_SH_UNKNOWN) if (mv_io_base != 0) { sh_mv.mv_inb = generic_inb; sh_mv.mv_inw = generic_inw; sh_mv.mv_inl = generic_inl; sh_mv.mv_outb = generic_outb; sh_mv.mv_outw = generic_outw; sh_mv.mv_outl = generic_outl; sh_mv.mv_inb_p = generic_inb_p; sh_mv.mv_inw_p = generic_inw_p; sh_mv.mv_inl_p = generic_inl_p; sh_mv.mv_outb_p = generic_outb_p; sh_mv.mv_outw_p = generic_outw_p; sh_mv.mv_outl_p = generic_outl_p; sh_mv.mv_insb = generic_insb; sh_mv.mv_insw = generic_insw; sh_mv.mv_insl = generic_insl; sh_mv.mv_outsb = generic_outsb; sh_mv.mv_outsw = generic_outsw; sh_mv.mv_outsl = generic_outsl; sh_mv.mv_isa_port2addr = generic_isa_port2addr; generic_io_base = mv_io_base; } if (mv_mmio_enable != 0) { sh_mv.mv_readb = generic_readb; sh_mv.mv_readw = generic_readw; sh_mv.mv_readl = generic_readl; sh_mv.mv_writeb = generic_writeb; sh_mv.mv_writew = generic_writew; sh_mv.mv_writel = generic_writel; } #endif #define PFN_UP(x) (((x) + PAGE_SIZE-1) >> PAGE_SHIFT) #define PFN_DOWN(x) ((x) >> PAGE_SHIFT) #define PFN_PHYS(x) ((x) << PAGE_SHIFT) #ifdef CONFIG_DISCONTIGMEM NODE_DATA(0)->bdata = &discontig_node_bdata[0]; NODE_DATA(1)->bdata = &discontig_node_bdata[1]; bootmap_size = init_bootmem_node(NODE_DATA(1), PFN_UP(__MEMORY_START_2ND), PFN_UP(__MEMORY_START_2ND), PFN_DOWN(__MEMORY_START_2ND+__MEMORY_SIZE_2ND)); free_bootmem_node(NODE_DATA(1), __MEMORY_START_2ND, __MEMORY_SIZE_2ND); reserve_bootmem_node(NODE_DATA(1), __MEMORY_START_2ND, bootmap_size); #endif /* * Find the highest page frame number we have available */ max_pfn = PFN_DOWN(__pa(memory_end)); /* * Determine low and high memory ranges: */ max_low_pfn = max_pfn; /* * Partially used pages are not usable - thus * we are rounding upwards: */ start_pfn = PFN_UP(__pa(&_end)); /* * Find a proper area for the bootmem bitmap. After this * bootstrap step all allocations (until the page allocator * is intact) must be done via bootmem_alloc(). */ bootmap_size = init_bootmem_node(NODE_DATA(0), start_pfn, __MEMORY_START>>PAGE_SHIFT, max_low_pfn); /* * Register fully available low RAM pages with the bootmem allocator. */ { unsigned long curr_pfn, last_pfn, pages; /* * We are rounding up the start address of usable memory: */ curr_pfn = PFN_UP(__MEMORY_START); /* * ... and at the end of the usable range downwards: */ last_pfn = PFN_DOWN(__pa(memory_end)); if (last_pfn > max_low_pfn) last_pfn = max_low_pfn; pages = last_pfn - curr_pfn; free_bootmem_node(NODE_DATA(0), PFN_PHYS(curr_pfn), PFN_PHYS(pages)); } /* * Reserve the kernel text and * Reserve the bootmem bitmap. We do this in two steps (first step * was init_bootmem()), because this catches the (definitely buggy) * case of us accidentally initializing the bootmem allocator with * an invalid RAM area. */ reserve_bootmem_node(NODE_DATA(0), __MEMORY_START+PAGE_SIZE, (PFN_PHYS(start_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START); /* * reserve physical page 0 - it's a special BIOS page on many boxes, * enabling clean reboots, SMP operation, laptop functions. */ reserve_bootmem_node(NODE_DATA(0), __MEMORY_START, PAGE_SIZE); #ifdef CONFIG_BLK_DEV_INITRD if (LOADER_TYPE && INITRD_START) { if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) { reserve_bootmem_node(NODE_DATA(0), INITRD_START+__MEMORY_START, INITRD_SIZE); initrd_start = INITRD_START ? INITRD_START + PAGE_OFFSET + __MEMORY_START : 0; initrd_end = initrd_start + INITRD_SIZE; } else { printk("initrd extends beyond end of memory " "(0x%08lx > 0x%08lx)\ndisabling initrd\n", INITRD_START + INITRD_SIZE, max_low_pfn << PAGE_SHIFT); initrd_start = 0; } } #endif #if 0 /* * Request the standard RAM and ROM resources - * they eat up PCI memory space */ request_resource(&iomem_resource, ram_resources+0); request_resource(&iomem_resource, ram_resources+1); request_resource(&iomem_resource, ram_resources+2); request_resource(ram_resources+1, &code_resource); request_resource(ram_resources+1, &data_resource); probe_roms(); /* request I/O space for devices used on all i[345]86 PCs */ for (i = 0; i < STANDARD_IO_RESOURCES; i++) request_resource(&ioport_resource, standard_io_resources+i); #endif /* Perform the machine specific initialisation */ if (sh_mv.mv_init_arch != NULL) { sh_mv.mv_init_arch(); } #if defined(__SH4__) /* We already grab/initialized FPU in head.S. Make it consisitent. */ init_task.used_math = 1; init_task.flags |= PF_USEDFPU; #endif paging_init(); } struct sh_machine_vector* __init get_mv_byname(const char* name) { extern int strcasecmp(const char *, const char *); extern long __machvec_start, __machvec_end; struct sh_machine_vector *all_vecs = (struct sh_machine_vector *)&__machvec_start; int i, n = ((unsigned long)&__machvec_end - (unsigned long)&__machvec_start)/ sizeof(struct sh_machine_vector); for (i = 0; i < n; ++i) { struct sh_machine_vector *mv = &all_vecs[i]; if (mv == NULL) continue; if (strcasecmp(name, mv->mv_name) == 0) { return mv; } } return NULL; } /* * Get CPU information for use by the procfs. */ #ifdef CONFIG_PROC_FS static int show_cpuinfo(struct seq_file *m, void *v) { #if defined(__sh3__) seq_printf(m, "cpu family\t: SH-3\n" "cache size\t: 8K-byte\n"); #elif defined(__SH4__) seq_printf(m, "cpu family\t: SH-4\n" "cache size\t: 8K-byte/16K-byte\n"); #endif seq_printf(m, "bogomips\t: %lu.%02lu\n\n", loops_per_jiffy/(500000/HZ), (loops_per_jiffy/(5000/HZ)) % 100); seq_printf(m, "Machine: %s\n", sh_mv.mv_name); #define PRINT_CLOCK(name, value) \ seq_printf(m, name " clock: %d.%02dMHz\n", \ ((value) / 1000000), ((value) % 1000000)/10000) PRINT_CLOCK("CPU", boot_cpu_data.cpu_clock); PRINT_CLOCK("Bus", boot_cpu_data.bus_clock); #ifdef CONFIG_CPU_SUBTYPE_ST40STB1 PRINT_CLOCK("Memory", boot_cpu_data.memory_clock); #endif PRINT_CLOCK("Peripheral module", boot_cpu_data.module_clock); return 0; } static void *c_start(struct seq_file *m, loff_t *pos) { return (void*)(*pos == 0); } static void *c_next(struct seq_file *m, void *v, loff_t *pos) { return NULL; } static void c_stop(struct seq_file *m, void *v) { } struct seq_operations cpuinfo_op = { .start = c_start, .next = c_next, .stop = c_stop, .show = show_cpuinfo, }; #endif