/* * JFFS2 -- Journalling Flash File System, Version 2. * * Copyright (C) 2001-2003 Red Hat, Inc. * * Created by David Woodhouse * * For licensing information, see the file 'LICENCE' in this directory. * * $Id: nodelist.h,v 1.146 2005/11/18 07:27:45 forrest Exp $ * */ #ifndef __JFFS2_NODELIST_H__ #define __JFFS2_NODELIST_H__ #include #include #include #include #include #include #include "summary.h" #ifdef __ECOS #include "os-ecos.h" #else #include /* For compatibility with older kernels */ #include "os-linux.h" #endif #define JFFS2_NATIVE_ENDIAN /* Note we handle mode bits conversion from JFFS2 (i.e. Linux) to/from whatever OS we're actually running on here too. */ #if defined(JFFS2_NATIVE_ENDIAN) #define cpu_to_je16(x) ((jint16_t){x}) #define cpu_to_je32(x) ((jint32_t){x}) #define cpu_to_jemode(x) ((jmode_t){os_to_jffs2_mode(x)}) #define je16_to_cpu(x) ((x).v16) #define je32_to_cpu(x) ((x).v32) #define jemode_to_cpu(x) (jffs2_to_os_mode((x).m)) #elif defined(JFFS2_BIG_ENDIAN) #define cpu_to_je16(x) ((jint16_t){cpu_to_be16(x)}) #define cpu_to_je32(x) ((jint32_t){cpu_to_be32(x)}) #define cpu_to_jemode(x) ((jmode_t){cpu_to_be32(os_to_jffs2_mode(x))}) #define je16_to_cpu(x) (be16_to_cpu(x.v16)) #define je32_to_cpu(x) (be32_to_cpu(x.v32)) #define jemode_to_cpu(x) (be32_to_cpu(jffs2_to_os_mode((x).m))) #elif defined(JFFS2_LITTLE_ENDIAN) #define cpu_to_je16(x) ((jint16_t){cpu_to_le16(x)}) #define cpu_to_je32(x) ((jint32_t){cpu_to_le32(x)}) #define cpu_to_jemode(x) ((jmode_t){cpu_to_le32(os_to_jffs2_mode(x))}) #define je16_to_cpu(x) (le16_to_cpu(x.v16)) #define je32_to_cpu(x) (le32_to_cpu(x.v32)) #define jemode_to_cpu(x) (le32_to_cpu(jffs2_to_os_mode((x).m))) #else #error wibble #endif /* The minimal node header size */ #define JFFS2_MIN_NODE_HEADER sizeof(struct jffs2_raw_dirent) /* This is all we need to keep in-core for each raw node during normal operation. As and when we do read_inode on a particular inode, we can scan the nodes which are listed for it and build up a proper map of which nodes are currently valid. JFFSv1 always used to keep that whole map in core for each inode. */ struct jffs2_raw_node_ref { struct jffs2_raw_node_ref *next_in_ino; /* Points to the next raw_node_ref for this inode. If this is the last, it points to the inode_cache for this inode instead. The inode_cache will have NULL in the first word so you know when you've got there :) */ struct jffs2_raw_node_ref *next_phys; uint32_t flash_offset; uint32_t __totlen; /* This may die; use ref_totlen(c, jeb, ) below */ }; /* flash_offset & 3 always has to be zero, because nodes are always aligned at 4 bytes. So we have a couple of extra bits to play with, which indicate the node's status; see below: */ #define REF_UNCHECKED 0 /* We haven't yet checked the CRC or built its inode */ #define REF_OBSOLETE 1 /* Obsolete, can be completely ignored */ #define REF_PRISTINE 2 /* Completely clean. GC without looking */ #define REF_NORMAL 3 /* Possibly overlapped. Read the page and write again on GC */ #define ref_flags(ref) ((ref)->flash_offset & 3) #define ref_offset(ref) ((ref)->flash_offset & ~3) #define ref_obsolete(ref) (((ref)->flash_offset & 3) == REF_OBSOLETE) #define mark_ref_normal(ref) do { (ref)->flash_offset = ref_offset(ref) | REF_NORMAL; } while(0) /* For each inode in the filesystem, we need to keep a record of nlink, because it would be a PITA to scan the whole directory tree at read_inode() time to calculate it, and to keep sufficient information in the raw_node_ref (basically both parent and child inode number for dirent nodes) would take more space than this does. We also keep a pointer to the first physical node which is part of this inode, too. */ struct jffs2_inode_cache { struct jffs2_full_dirent *scan_dents; /* Used during scan to hold temporary lists of dirents, and later must be set to NULL to mark the end of the raw_node_ref->next_in_ino chain. */ struct jffs2_inode_cache *next; struct jffs2_raw_node_ref *nodes; uint32_t ino; int nlink; int state; }; /* Inode states for 'state' above. We need the 'GC' state to prevent someone from doing a read_inode() while we're moving a 'REF_PRISTINE' node without going through all the iget() nonsense */ #define INO_STATE_UNCHECKED 0 /* CRC checks not yet done */ #define INO_STATE_CHECKING 1 /* CRC checks in progress */ #define INO_STATE_PRESENT 2 /* In core */ #define INO_STATE_CHECKEDABSENT 3 /* Checked, cleared again */ #define INO_STATE_GC 4 /* GCing a 'pristine' node */ #define INO_STATE_READING 5 /* In read_inode() */ #define INO_STATE_CLEARING 6 /* In clear_inode() */ #define INOCACHE_HASHSIZE 128 /* Larger representation of a raw node, kept in-core only when the struct inode for this particular ino is instantiated. */ struct jffs2_full_dnode { struct jffs2_raw_node_ref *raw; uint32_t ofs; /* The offset to which the data of this node belongs */ uint32_t size; uint32_t frags; /* Number of fragments which currently refer to this node. When this reaches zero, the node is obsolete. */ }; /* Even larger representation of a raw node, kept in-core only while we're actually building up the original map of which nodes go where, in read_inode() */ struct jffs2_tmp_dnode_info { struct rb_node rb; struct jffs2_full_dnode *fn; uint32_t version; uint32_t data_crc; uint32_t partial_crc; uint32_t csize; }; struct jffs2_full_dirent { struct jffs2_raw_node_ref *raw; struct jffs2_full_dirent *next; uint32_t version; uint32_t ino; /* == zero for unlink */ unsigned int nhash; unsigned char type; unsigned char name[0]; }; /* Fragments - used to build a map of which raw node to obtain data from for each part of the ino */ struct jffs2_node_frag { struct rb_node rb; struct jffs2_full_dnode *node; /* NULL for holes */ uint32_t size; uint32_t ofs; /* The offset to which this fragment belongs */ }; struct jffs2_eraseblock { struct list_head list; struct list_head hash_list; uint16_t bad_count; uint16_t flags; uint32_t offset; /* of this block in the MTD */ uint32_t unchecked_size; uint32_t used_size; uint32_t dirty_size; uint32_t wasted_size; uint32_t free_size; /* Note that sector_size - free_size is the address of the first free space */ struct jffs2_raw_node_ref *first_node; struct jffs2_raw_node_ref *last_node; struct jffs2_raw_node_ref *gc_node; /* Next node to be garbage collected */ uint32_t erase_count; }; #define EBFLAGS_SET_EBH(jeb) (jeb->flags |= 1) #define EBFLAGS_CLR_EBH(jeb) (jeb->flags &= ~1) #define EBFLAGS_HAS_EBH(jeb) ((jeb->flags & 1) == 1) /* Calculate totlen from surrounding nodes or eraseblock */ static inline uint32_t __ref_totlen(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, struct jffs2_raw_node_ref *ref) { uint32_t ref_end; if (ref->next_phys) ref_end = ref_offset(ref->next_phys); else { if (!jeb) jeb = c->blocks[ref->flash_offset / c->sector_size]; /* Last node in block. Use free_space */ BUG_ON(ref != jeb->last_node); ref_end = jeb->offset + c->sector_size - jeb->free_size; } return ref_end - ref_offset(ref); } static inline uint32_t ref_totlen(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, struct jffs2_raw_node_ref *ref) { uint32_t ret; #if CONFIG_JFFS2_FS_DEBUG > 0 if (jeb && jeb != c->blocks[ref->flash_offset / c->sector_size]) { printk(KERN_CRIT "ref_totlen called with wrong block -- at 0x%08x instead of 0x%08x; ref 0x%08x\n", jeb->offset, c->blocks[ref->flash_offset / c->sector_size]->offset, ref_offset(ref)); BUG(); } #endif #if 1 ret = ref->__totlen; #else /* This doesn't actually work yet */ ret = __ref_totlen(c, jeb, ref); if (ret != ref->__totlen) { printk(KERN_CRIT "Totlen for ref at %p (0x%08x-0x%08x) miscalculated as 0x%x instead of %x\n", ref, ref_offset(ref), ref_offset(ref)+ref->__totlen, ret, ref->__totlen); if (!jeb) jeb = c->blocks[ref->flash_offset / c->sector_size]; jffs2_dbg_dump_node_refs_nolock(c, jeb); BUG(); } #endif return ret; } #define ALLOC_NORMAL 0 /* Normal allocation */ #define ALLOC_DELETION 1 /* Deletion node. Best to allow it */ #define ALLOC_GC 2 /* Space requested for GC. Give it or die */ #define ALLOC_NORETRY 3 /* For jffs2_write_dnode: On failure, return -EAGAIN instead of retrying */ /* How much dirty space before it goes on the very_dirty_list */ #define VERYDIRTY(c, size) ((size) >= ((c)->sector_size / 2)) /* check if dirty space is more than 255 Byte */ #define ISDIRTY(size) ((size) > sizeof (struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN) #define PAD(x) (((x)+3)&~3) static inline struct jffs2_inode_cache *jffs2_raw_ref_to_ic(struct jffs2_raw_node_ref *raw) { while(raw->next_in_ino) { raw = raw->next_in_ino; } return ((struct jffs2_inode_cache *)raw); } static inline struct jffs2_node_frag *frag_first(struct rb_root *root) { struct rb_node *node = root->rb_node; if (!node) return NULL; while(node->rb_left) node = node->rb_left; return rb_entry(node, struct jffs2_node_frag, rb); } static inline struct jffs2_node_frag *frag_last(struct rb_root *root) { struct rb_node *node = root->rb_node; if (!node) return NULL; while(node->rb_right) node = node->rb_right; return rb_entry(node, struct jffs2_node_frag, rb); } static inline void record_erase_count(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) { c->total_erase_count += jeb->erase_count; c->nr_blocks_with_ebh++; if (jeb->erase_count > c->max_erase_count) { c->max_erase_count = jeb->erase_count; } } #define rb_parent(rb) ((rb)->rb_parent) #define frag_next(frag) rb_entry(rb_next(&(frag)->rb), struct jffs2_node_frag, rb) #define frag_prev(frag) rb_entry(rb_prev(&(frag)->rb), struct jffs2_node_frag, rb) #define frag_parent(frag) rb_entry(rb_parent(&(frag)->rb), struct jffs2_node_frag, rb) #define frag_left(frag) rb_entry((frag)->rb.rb_left, struct jffs2_node_frag, rb) #define frag_right(frag) rb_entry((frag)->rb.rb_right, struct jffs2_node_frag, rb) #define frag_erase(frag, list) rb_erase(&frag->rb, list); /* nodelist.c */ void jffs2_add_fd_to_list(struct jffs2_sb_info *c, struct jffs2_full_dirent *new, struct jffs2_full_dirent **list); void jffs2_set_inocache_state(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic, int state); struct jffs2_inode_cache *jffs2_get_ino_cache(struct jffs2_sb_info *c, uint32_t ino); void jffs2_add_ino_cache (struct jffs2_sb_info *c, struct jffs2_inode_cache *new); void jffs2_del_ino_cache(struct jffs2_sb_info *c, struct jffs2_inode_cache *old); void jffs2_free_ino_caches(struct jffs2_sb_info *c); void jffs2_free_raw_node_refs(struct jffs2_sb_info *c); struct jffs2_node_frag *jffs2_lookup_node_frag(struct rb_root *fragtree, uint32_t offset); void jffs2_kill_fragtree(struct rb_root *root, struct jffs2_sb_info *c_delete); struct rb_node *rb_next(struct rb_node *); struct rb_node *rb_prev(struct rb_node *); void rb_replace_node(struct rb_node *victim, struct rb_node *new, struct rb_root *root); void jffs2_obsolete_node_frag(struct jffs2_sb_info *c, struct jffs2_node_frag *this); int jffs2_add_full_dnode_to_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_full_dnode *fn); void jffs2_truncate_fragtree (struct jffs2_sb_info *c, struct rb_root *list, uint32_t size); int jffs2_add_older_frag_to_fragtree(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_tmp_dnode_info *tn); /* nodemgmt.c */ int jffs2_thread_should_wake(struct jffs2_sb_info *c); int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len, int prio, uint32_t sumsize); int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len, uint32_t sumsize); int jffs2_add_physical_node_ref(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *new); void jffs2_complete_reservation(struct jffs2_sb_info *c); void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *raw); /* write.c */ int jffs2_do_new_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, uint32_t mode, struct jffs2_raw_inode *ri); struct jffs2_full_dnode *jffs2_write_dnode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_raw_inode *ri, const unsigned char *data, uint32_t datalen, uint32_t flash_ofs, int alloc_mode); struct jffs2_full_dirent *jffs2_write_dirent(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_raw_dirent *rd, const unsigned char *name, uint32_t namelen, uint32_t flash_ofs, int alloc_mode); int jffs2_write_inode_range(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_raw_inode *ri, unsigned char *buf, uint32_t offset, uint32_t writelen, uint32_t *retlen); int jffs2_do_create(struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f, struct jffs2_inode_info *f, struct jffs2_raw_inode *ri, const char *name, int namelen); int jffs2_do_unlink(struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f, const char *name, int namelen, struct jffs2_inode_info *dead_f, uint32_t time); int jffs2_do_link (struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f, uint32_t ino, uint8_t type, const char *name, int namelen, uint32_t time); /* readinode.c */ int jffs2_do_read_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, uint32_t ino, struct jffs2_raw_inode *latest_node); int jffs2_do_crccheck_inode(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic); void jffs2_do_clear_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f); /* malloc.c */ int jffs2_create_slab_caches(void); void jffs2_destroy_slab_caches(void); struct jffs2_full_dirent *jffs2_alloc_full_dirent(int namesize); void jffs2_free_full_dirent(struct jffs2_full_dirent *); struct jffs2_full_dnode *jffs2_alloc_full_dnode(void); void jffs2_free_full_dnode(struct jffs2_full_dnode *); struct jffs2_raw_dirent *jffs2_alloc_raw_dirent(void); void jffs2_free_raw_dirent(struct jffs2_raw_dirent *); struct jffs2_raw_inode *jffs2_alloc_raw_inode(void); void jffs2_free_raw_inode(struct jffs2_raw_inode *); struct jffs2_tmp_dnode_info *jffs2_alloc_tmp_dnode_info(void); void jffs2_free_tmp_dnode_info(struct jffs2_tmp_dnode_info *); struct jffs2_raw_node_ref *jffs2_alloc_raw_node_ref(void); void jffs2_free_raw_node_ref(struct jffs2_raw_node_ref *); struct jffs2_node_frag *jffs2_alloc_node_frag(void); void jffs2_free_node_frag(struct jffs2_node_frag *); struct jffs2_inode_cache *jffs2_alloc_inode_cache(void); void jffs2_free_inode_cache(struct jffs2_inode_cache *); int jffs2_alloc_eraseblocks(struct jffs2_sb_info *c); void jffs2_free_eraseblocks(struct jffs2_sb_info *c); /* gc.c */ int jffs2_garbage_collect_pass(struct jffs2_sb_info *c); /* read.c */ int jffs2_read_dnode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_full_dnode *fd, unsigned char *buf, int ofs, int len); int jffs2_read_inode_range(struct jffs2_sb_info *c, struct jffs2_inode_info *f, unsigned char *buf, uint32_t offset, uint32_t len); char *jffs2_getlink(struct jffs2_sb_info *c, struct jffs2_inode_info *f); /* scan.c */ int jffs2_scan_medium(struct jffs2_sb_info *c); void jffs2_rotate_lists(struct jffs2_sb_info *c); struct jffs2_inode_cache *jffs2_scan_make_ino_cache(struct jffs2_sb_info *c, uint32_t ino); int jffs2_scan_classify_jeb(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb); /* build.c */ int jffs2_do_mount_fs(struct jffs2_sb_info *c); /* erase.c */ void jffs2_erase_pending_blocks(struct jffs2_sb_info *c, int count); #ifdef CONFIG_JFFS2_FS_WRITEBUFFER /* wbuf.c */ int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino); int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c); int jffs2_check_nand_cleanmarker_ebh(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t *data_len); int jffs2_write_nand_ebh(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb); #endif /* wear_leveling.c */ void jffs2_add_to_hash_table(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint8_t flag); void jffs2_remove_from_hash_table(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint8_t flag); struct jffs2_eraseblock *jffs2_get_free_block(struct jffs2_sb_info *c); struct jffs2_eraseblock *jffs2_get_used_block(struct jffs2_sb_info *c); #include "debug.h" #endif /* __JFFS2_NODELIST_H__ */