
Dibbler – a portable DHCPv6

Developer’s Guide

Tomasz Mrugalski
thomson(at)klub.com.pl

2007-09-09

0.6.1

Contents

1 Intro 2

2 Compilation 2
2.1 Linux . 2
2.2 Windows . 2

2.2.1 Flex/bison under Windows . 4
2.3 DEB and RPM Packages . 4
2.4 Ebuild script for Gentoo . 4
2.5 Dibbler in Linux distributions . 5
2.6 Compilation environment . 5
2.7 Changing default values . 5
2.8 Modular features . 5
2.9 Cross-compilation . 6

3 Portability Guide 7
3.1 Low-level System API . 7

4 General information 9
4.1 Release cycle . 9
4.2 Documentation . 9
4.3 Memory/CPU usage . 9

5 Basic source code informations 10
5.1 Option values and filenames . 10
5.2 Memory Management using SmartPtr . 10
5.3 Logging . 12
5.4 Names and prefixes . 12
5.5 Configuration file parsers . 13

5.5.1 Parsing . 13
5.5.2 Using parsed values . 14
5.5.3 Embedded configuration . 14

mailto:thomson(at)klub.com.pl

Dibbler – a portable DHCPv6 Developer’s Guide 2

6 Architecture 15
6.1 Client Architecture . 15
6.2 Server Architecture . 16
6.3 Relay Architecture . 16

7 Dibbler debugging 17
7.1 Valgrind . 17

8 FAQ 17

9 Tips 17

Bibliography 19

1 Intro

Welcome to the Dibbler developer’s guide. This document describes various aspects of the compilation
and installation of Dibbler server and client. Detailed description of the internal architecture is also
provided. People with programming background can find useful informations here. Main purpose of this
document is to help contributors to quickly know Dibbler from the inside.

This document is intenteded just as its title states – a guide. It is not a thorough code description.
To quickly wander around classes and methods used, see documentation generated with the Doxygen tool
(open file doc/html/index.html). More informations about documentation is provided in section 4.2.

2 Compilation

Currently Dibbler supports two platforms: Linux with kernels 2.4 and 2.6 series and Windows (XP
and 2003). Compilation process is system dependent, so it is described for Linux and Windows separately.

2.1 Linux

To compile Dibbler, extract sources, and type:

make client
make server

to build client and server. Although parser files are generated using flex and bison++ and those generated
sources are included, so there is no need to generate them. To generate it if someone wants to generate it
by hand instead of using those supplied versions, here are appropriate commands:

make parser

to generate client, server and relay parsers.
There occassionaly might be problem with compilation, when different flex version is installed in the

system. Proper FlexLexer.h is provided in the SrvCfgMgr and ClntCfgMgr directories.

2.2 Windows

To compile Dibbler under Windows, MS Visual Studio 2003 was used. Project files are provided in
the CVS and source archives.

Select project name (server-winxp or client-winxp), click properties, choose ,,Debugging” from ,,Con-
figuration Properties”. Adjust ,,Command arguments” to match your directory.

Dibbler – a portable DHCPv6 Developer’s Guide 3

Previous versions were also compiled using MS Visual Studio 2002, but it is not used anymore and is
not supported. If you are using MS Visual Studio 2002, there might be a problem with lowlevel-win32.c
file compilation. Compiler might complain about missing Ipv6IfIndex in IP ADDAPTER ADDRESSES
structure. There is a simple way to bypass this. In
Program Files/Microsoft Visual Studio.NET/Vc7/PlatformSDK/Include/ directory, there is IPTypes.h
file. It contains structure:

typedef struct _IP_ADAPTER_ADDRESSES {
union {

ULONGLONG Alignment;
struct {

ULONG Length;
DWORD IfIndex;

};
};
struct _IP_ADAPTER_ADDRESSES *Next;
PCHAR AdapterName;
PIP_ADAPTER_UNICAST_ADDRESS FirstUnicastAddress;
PIP_ADAPTER_ANYCAST_ADDRESS FirstAnycastAddress;
PIP_ADAPTER_MULTICAST_ADDRESS FirstMulticastAddress;
PIP_ADAPTER_DNS_SERVER_ADDRESS FirstDnsServerAddress;
PWCHAR DnsSuffix;
PWCHAR Description;
PWCHAR FriendlyName;
BYTE PhysicalAddress[MAX_ADAPTER_ADDRESS_LENGTH];
DWORD PhysicalAddressLength;
DWORD Flags;
DWORD Mtu;
DWORD IfType;
IF_OPER_STATUS OperStatus;

} IP_ADAPTER_ADDRESSES, *PIP_ADAPTER_ADDRESSES;

You should slightly modify it. Just add one additional field: DWORD Ipv6IfIndex;. Now it should
look like this:

typedef struct _IP_ADAPTER_ADDRESSES {
union {

ULONGLONG Alignment;
struct {

ULONG Length;
DWORD IfIndex;

};
};
struct _IP_ADAPTER_ADDRESSES *Next;
PCHAR AdapterName;
PIP_ADAPTER_UNICAST_ADDRESS FirstUnicastAddress;
PIP_ADAPTER_ANYCAST_ADDRESS FirstAnycastAddress;
PIP_ADAPTER_MULTICAST_ADDRESS FirstMulticastAddress;
PIP_ADAPTER_DNS_SERVER_ADDRESS FirstDnsServerAddress;
PWCHAR DnsSuffix;
PWCHAR Description;

Dibbler – a portable DHCPv6 Developer’s Guide 4

PWCHAR FriendlyName;
BYTE PhysicalAddress[MAX_ADAPTER_ADDRESS_LENGTH];
DWORD PhysicalAddressLength;
DWORD Flags;
DWORD Mtu;
DWORD IfType;
IF_OPER_STATUS OperStatus;
DWORD Ipv6IfIndex;

} IP_ADAPTER_ADDRESSES, *PIP_ADAPTER_ADDRESSES;

2.2.1 Flex/bison under Windows

As was mentioned before, flex and bison++ tools are not required to successfully build Dibbler. They
are only required, if changes are made to the parsers. Lexer and Parser files (ClntLexer.*, ClntParser.*,
SrvLexer.* and SrvParser.*) are generated by author and placed in CVS and archives. There is no
need to generate them. However, if you insist on doing so, there is an flex and bison binary included in
port-winxp. Take note that several modifications are required:

• To generate ClntParser.cpp and ClntLexer.cpp files, you can use parser.bat. After generation, in
file ClntLexer.cpp replace: class istream; with: #include <iostream> and using namespace std;
lines.

• flex binary included is slightly modified. It generates

#include "FlexLexer.h"

instead of

#include <FlexLexer.h>

You should add . to include path if you have problem with missing FlexLexer.h. Also note that
FlexLexer.h is modified (std:: added in several places, <fstream.h> is replaced with <fstream>
etc.)

Keep in mind that author is in no way a flex/bison guru and found this method in a painful trial-and-
error way.

2.3 DEB and RPM Packages

There is a possibility to generate RPM (RadHat, Fedora Core, Mandrake, PLD and lots of other
distributions) and DEB (Debian, Knoppix and other) packages. Before trying this trick, make sure that
you have required tools (rpmbuild for RPM;dpkg-deb for DEB packages). Note that this requires root
privileges. Package generation is done by the following commands:

make release-deb
make release-rpm

2.4 Ebuild script for Gentoo

There is also ebuild script prepared for Gentoo users. It is located in the Port-linux/gentoo directory.

Dibbler – a portable DHCPv6 Developer’s Guide 5

2.5 Dibbler in Linux distributions

Dibbler is available in several distributions:

Debian GNU/Linux – use standard tools (apt-get, aptitude) to install dibbler-client, dibbler-server,
dibbler-relay or dibbler-doc packages (e.g. apt-get install dibbler-client)

Gentoo Linux – use emerge to install dibbler (e.g. emerge dibbler).

PLD GNU/Linux – use standard PLD’s poldek tool to install dibbler package.

2.6 Compilation environment

When compilation is being performed in non-standard envrionment, it is a good idea to examine and
modify Makefile.inc file. Compiler name, compilation and link options, used libraries and debugging
options can be modified there.

2.7 Changing default values

Custom builds might be prepared with different than default compilation options. Here is a list of
features, which can be customised:

• Default log level – please modify LOGMODE DEFAULT define in Mish/Logger.h.

• FIXME - describe remaining parameters

2.8 Modular features

In the 0.5.0 release, so called modular features were introduced. It is now possible to enable or disable
of the Dibbler features. To set, which optional features should be compiled, modify Makefile.inc file
before starting compilation1. Following flags are available:

MOD CLNT EMBEDDED CFG – If this flag is set, client will use hardcoded configuration, instead
of reading configuration file. To reasonably use this feature, hardcoded configuration should be
modified to match specific needs. See ClntCfgMgr/ClntCfgMgr.cpp file for details.

MOD CLNT DISABLE DNSUPDATE – If this flag is set, client will be compiled without DNS
Update support, used in FQDN feature. This will make client binary file smaller and will skip the
whole poslib library, but client will not be able to perform DNS Updates on its own and will ask
server to perform such updates. When DNS Updates are disabled, extra care should be used during
server configuration, so all updates will performed on the server side.

MOD CLNT BIND REUSE – Normally it does not make sense to execute server and client on the
same machine. It is also not reasonable to execute several client instances on the same host. To
prevent such situations, client open normal sockets (without reuse flag). If second client instance
is executed, it will fail to create and bind sockets, because required address/port combination is
already used by the first instance. However, in some situations this safety check can be unwanted
and situation to allow to execute several clients in parallel should be allowed. To allow this, enable
flag MOD CLNT BIND REUSE. Note that feature will also make possible to execute server and
client on the same node.

1In Windows builds, which use MS Visual Studio, those flags must be defined in the project options window

http://debian.org
http://www.gentoo.org
http://www.pld-linux.org

Dibbler – a portable DHCPv6 Developer’s Guide 6

MOD SRV DISABLE DNSUPDATE – If this flag is set, server will be compiled without DNS Up-
date support, used in FQDN feature. This will make server binary file smaller and will skip the
whole poslib library, but server will not be able to perform DNS Updates on client behalf. According
to FQDN standard [14], only server is allowed to execute reverse resolve (PTR record) DNS updates,
so in such setup only forward resoling (AAAA record) will be executed be the client.

2.9 Cross-compilation

Since 0.6.1 version, dibbler supports cross-compilation. It was possible in previous versions, but with
considerable amount of work.

Following description has been provided by Petr Pisar2

In general, a toolchain has to be specified.
For autotools compilation driven (e.g. poslib), you need to call the configure script with –chost and

–cbuild parameters describing toolchains used for compilation of binaries for platform where dibbler is
supposted to run and for platform where compilation will be proceeded. configure should derive names of
compiler for C (CC), C++ (CXX), name of binutils (e.g. strip) etc. automatically.

If you don’t use autotools (like dibbler partially) or you want your own compilers, you need to ex-
port this variables manually (CC, CXX). If you want specify compiler for producing local binaries, use
CC FOR BUILD and CXX FOR BUILD.

Next, if you want to optimize the binaries or to use some non-standard paths to header files or
libraries, you need to export variables CFLAGS and LDFLAGS for C language and CXXFLAGS and
LDFLAGS for C++. These variables apply for compilation for target platform. If you want tweak
compilation of binaries for local building machine, use CFLAGS FOR BUILD, LDFLAGS FOR BUILD
and CXXFLAGS FOR BUILD.

If you have all cross-compiled libraries under one directory (lets say image of root file system), you can
use gcc argument –sysroot which allows to specify alternate directory tree, where all headers and libraries
live.

Finally, you should tell to make by DESTDIR variable, where you want to install dibbler.
For example, the following command can be used to cross-compile dibbler for mipsel-softfloat-linux-gnu

on i586-pc-linux-gnu having MIPS system installed under /var/tftp/mips32el-linux-gnu and all tool-chain
utilities in PATH:

CBUILD=i586−pc−l inux−gnu \
CC=mipsel−s o f t f l o a t −l inux−gnu−gcc \
CXX=mipsel−s o f t f l o a t −l inux−gnu−g++ \
CFLAGS=’−march=4kc −msoft−f l o a t −Os −pipe −fomit−frame−po in t e r
−−sy s r oo t=/var / t f t p / mips32el−l inux−gnu ’ \
CXXFLAGS=’−march=4kc −msoft−f l o a t −Os −pipe −fomit−frame−po in t e r
−−sy s r oo t=/var / t f t p / mips32el−l inux−gnu ’ \
LDFLAGS=−−sy s r oo t=/var / t f t p / mips32el−l inux−gnu \
CHOST=mipsel−s o f t f l o a t −l inux−gnu \
CC FOR BUILD=i586−pc−l inux−gnu−gcc \
CFLAGS FOR BUILD=’−march=k6−2 −O2 −pipe −fomit−frame−pointer ’ \
CXXFLAGS FOR BUILD=’−march=k6−2 −O2 −pipe −fomit−frame−pointer ’ \
CXX FOR BUILD=i586−pc−l inux−gnu−g++ \
LDFLAGS FOR BUILD= \
make −j 1

2petr.pisar(at)atlas(dot)cz. Thanks!

Dibbler – a portable DHCPv6 Developer’s Guide 7

3 Portability Guide

This section contains guidelines and tips for people intending to port Dibbler to a new achitecture
or system. Before attempting to do so, please contact Dibbler author (thomson(at)klub.com.pl) for help.
Substantial support will be provided.

3.1 Low-level System API

To port dibbler to a new system, several of the low level functions have to be implemented. List of
those functions is available in Misc/Portable.h file, in section labeled as:

/* ** */
/* *** interface/socket low level functions ************************* */
/* ** */

Here is a description of the function prototypes:

struct iface * if list get() – returns pointer to a list of iface structures. Each structure represents a
network interface. This structure is defined in the Misc/Portable.h file. This function should allocate
memory for this list.

void if list release(struct iface * list) – releases list previously allocated in the if list get() function.

int ipaddr add(const char* ifacename, int ifindex,const char* addr, uint pref, uint valid) –
This function adds address specified (in plain text) in addr parameter to the interface named iface-
name with interface index ifindex with preferred and valid lifetimes set to pref and valid. Note that
some systems might ignore interface name and use ifindex only, or vice versa.

int ipaddr del(const char* ifacename, int ifindex, const char* addr) – removes address addr (spec-
ified in plain text) from the interface ifacename.

int sock add(char* ifacename,int ifaceid, char* addr, int port, int thisifaceonly, int reuse) –
create socket used to read and write data to the ifacename/ifaceid interface, bound to address addr
(specified in plain text) and to the port. thisifaceonly parameter specifies if the socket should be
bound to the specific interface (1) or not (0). Some systems (e.g. Linux) allow to bind socket in a
way that the address/port combination can be bound multiple times. This kind of socket binding
allow some advanced tricks like running both server and client on the same host. This parameter
is specified by MOD CLNT BIND REUSE, defined (or not) Makefile.inc. This function return file
descriptor used to reference to a created socket.

int sock del(int fd) – delete previously created socket. fd is a file descriptor returned by the sock add()
function.

int sock send(int fd, char* addr, char* buf, int buflen, int port, int iface) – sends data to addr
(defined in packed name)/port, using socket fs. Send buflen byte starting at buf. Send the data
using interface iface.

int sock recv(int fd, char* myPlainAddr, char* peerPlainAddr, char* buf, int buflen) – receive
data from the fd socket. Store destination (my) address in a memory located at myPlainAddr, store
sender’s address in a memory located at peerPlainAddr. The data itself should be stored in a mem-
ory located at buf. buflen is a size of a buffer (to avoid buffer overflow). This function returns
number of bytes received.

mailto:thomson(at)klub.com.pl

Dibbler – a portable DHCPv6 Developer’s Guide 8

int is addr tentative(char* ifacename, int iface, char* plainAddr) – returns information if the
address plainAddr added to the ifacename/iface interface is tentative (1) or not (0). It is possible that
the Duplicate Address Detection is not yet complete, so other possible return value is inconclusive
(2).

Following functions are used to set corresponding parameters, received from the DHCPv6, in the
system:

int dns_add(const char* ifname, int ifindex, const char* addrPlain);
int dns_del(const char* ifname, int ifindex, const char* addrPlain);
int domain_add(const char* ifname, int ifindex, const char* domain);
int domain_del(const char* ifname, int ifindex, const char* domain);
int ntp_add(const char* ifname, int ifindex, const char* addrPlain);
int ntp_del(const char* ifname, int ifindex, const char* addrPlain);
int timezone_set(const char* ifname, int ifindex, const char*timezone);
int timezone_del(const char* ifname, int ifindex, const char*timezone);
int sipserver_add(const char* ifname, int ifindex, const char*addrPlain);
int sipserver_del(const char* ifname, int ifindex, const char*addrPlain);
int sipdomain_add(const char* ifname, int ifindex, const char*domain);
int sipdomain_del(const char* ifname, int ifindex, const char*domain);
int nisserver_add(const char* ifname, int ifindex, const char*addrPlain);
int nisserver_del(const char* ifname, int ifindex, const char*addrPlain);
int nisdomain_set(const char* ifname, int ifindex, const char*domain);
int nisdomain_del(const char* ifname, int ifindex, const char*domain);
int nisplusserver_add(const char* ifname, int ifindex, const char*addrPlain);
int nisplusserver_del(const char* ifname, int ifindex, const char*addrPlain);
int nisplusdomain_set(const char* ifname, int ifindex, const char*domain);
int nisplusdomain_del(const char* ifname, int ifindex, const char*domain);

There are also inet pton4() (IPv4 address Plain-To-Network), inet pton6 (IPv6 address Plain-To-
Network), inet ntop4 (IPv4 address Network-To-Plain) and inet ntop6 (IPv6 address Network-To-Plain)
functions, which should be present in the system. If they are not, port-specific part of the dibbler should
provide them.

Also function microsleep(int x) should make current process dormant for x microseconds.
An example implementation of those functions, can be found in Port-linux/layer3.c and Port-linux/lowlevel-

options-linux.c file. Those files are specific for a Linux system.
To fully port Dibbler, also a main() function must be implemented. It should contain system-specific

interface (e.g. registration as a service in Windows environment or detaching to background in Linux
”daemon” mode). It is also necessary to include following code in the client implementation:

TDHCPClient client(CLNTCONF_FILE);
client.run();

Where CLNTCONF FILE is a filename of a client configuration file. Similar code should be executed
in the server implementation:

TDHCPServer srv(SRVCONF_FILE);
srv.run();

See Port-linux/dibbler-client.cpp and Port-linux/dibbler-server.cpp for example implementation, spe-
cific to a Linux systems. Implementations for Windows XP are available in the Port-win32 directory.

Dibbler – a portable DHCPv6 Developer’s Guide 9

4 General information

This section covers several loosely related topics.

4.1 Release cycle

Dibbler is being released as a one product, i.e. client, server and relay are always released together.
Each version is being designated with three numbers, separated by periods, e.g. 0.4.2. Every time a
new significant functionality is added, the middle number is being increased. When new release contains
only fixes and small improvements, only the minor number is changed. Leftmost number is currently set
to 0 as not all features mentioned in base DHCPv6 document (RFC3315, [5]) are implemented. When
this implementation will be complete, release number will reach 1.0.0. Since DHCPv6 specification is
extensive, don’t expect this to happen anytime soon.

4.2 Documentation

There are three parts of the documentation: User’s Guide, Developer’s Guide and a Code documenta-
tion. Both guides are written in LATEX(*.tex files). To generate PDF files, you need to have LATEXinstalled.
To generate Code documentation, a tool called Doxygen is required. All documentation is of course avail-
able at Dibbler’s homepage.

To generate all documentation, type (in Dibbler source directory):

make doc oxygen

In this section various common aspects of the Dibbler internal workings are decribed.

4.3 Memory/CPU usage

This section provides basic insight about memory and CPU requirements for the dibbler components.
Folowing paragraphs describe memory and CPU usage measurements. They were taken on a AMD

Athlon 2800+ (actual clock speed: 2083MHz), running under Linux 2.6.17.3. Dibbler was compiled by
gcc 4.1.2 (exact version number printed by gcc --version command:
gcc (GCC) 4.1.2 20060715 (prerelease) (Debian 4.1.1-9)).

Every Dibbler component (client, server or relay) is event driven. It means that it does nothing unless
some data was received or a specific timeout has been reached. Each component most of the time spends
in a select() system call. This means that (unless lots of traffic is being received) actual CPU usage is
0. During tests, author was unable to observe any CPU consumption above 0,0%.

In the 0.5.0 release, a compilation options called Modular features was added (see section 2.8). One of
the possible way of compiling Dibbler is to disable poslib - a library used to perform DNS Updates. Dibbler
binaries compiled without poslib are designated as -wo-poslib. It is possible to compile Dibbler with various
compilation options. In particular (enabled by default) -g option includes debugging information in the
binary file (this greatly affects binary file size, but does not affect memory usage), -O0 (disably any kind
of optimisation) or -Os (produce smallest possible code). Debugging informations can be removed using
strip command (designated below as -stripped). Linux command line tool called top was used to measure
memory usage. VIRT is a virtual memory size, RES denotes size of actual physical memory used and
SHR is a size of a shared memory. See top manual page for details.

http://www.doxygen.org
http://klub.com.pl/dhcpv6

Dibbler – a portable DHCPv6 Developer’s Guide 10

VIRT RES SHR %CPU %MEM Optim. filesize COMMAND
3416 1564 1416 0.0 0.2 -O0 7123510 dibbler-server
3416 1560 1416 0.0 0.2 -O0 751948 dibbler-server-stripped
3328 1544 1400 0.0 0.2 -O0 6533375 dibbler-server-wo-poslib
3328 1548 1400 0.0 0.2 -O0 663592 dibbler-server-wo-poslib-stripped
3220 1436 1292 0.0 0.2 -Os 4596760 dibbler-server run
3140 1424 1276 0.0 0.2 -Os 468776 dibbler-server-wo-poslib
3388 1636 1496 0.0 0.2 -O0 9771605 dibbler-client
3392 1644 1496 0.0 0.2 -O0 725352 dibbler-client-stripped
3296 1608 1472 0.0 0.2 -O0 9183726 dibbler-client-wo-poslib
3300 1612 1472 0.0 0.2 -O0 639240 dibbler-client-wo-poslib-stripped
3212 1472 1336 0.0 0.2 -Os 5901734 dibbler-client-wo-poslib
3120 1456 1320 0.0 0.2 -Os 458984 dibbler-client-wo-poslib

Dibbler stores data internally in lists. This means that server’s memory and CPU usage is a linearly
proportional to a number of clients it currently supports.

FIXME: Long/performance tests are required.

5 Basic source code informations

This section describes various aspects of Dibbler compilation, usage and internal design.

5.1 Option values and filenames

DHCPv6 is a relatively new protocol and additional options are in a specification phase. It means that
until standarisation process is over, they do not have any officially assigned numbers. Once standarization
process is over (and RFC document is released), this option gets an official number.

There’s pretty good chance that different implementors may choose diffrent values for those not-yet
officialy accepted options. To change those values in Dibbler, you have to modify file misc/DHCPConst.h
and recompile server or client. Make sure that you build everything for scratch. Use make clean in Linux
and Clean up solution in Windows before you start building a new version.

In default build, Dibbler stores all information in the /var/lib/dibbler directory (Linux) or in
the working directory (Windows). There are multiple files stored in those directories. However, some-
times there is a need to build Dibbler which uses different directory or filename. To do so, simply edit
misc/Portable.h file and rebuild everything.

5.2 Memory Management using SmartPtr

To effectively fight memory leaks, clever mechanism was introduced. Smart pointers are used to point
to all dynamic structures, e.g. messages, options or client informations in server database. Smart pointer
will free object by itself, when object is no longer needed. When this is happening? When last smart
pointer stops pointing at the object. There is a tradeoff: normal pointers (*) should not be mixed with
smart pointers.

Smart pointers are implemented as C++ class templates. Template is called SmartPtr<TYPE>.
To quickly explain smart pointers usage, here’s short code example:

1 void foo() {
2 SmartPtr<TIPv6Addr> addr = new TIPv6Addr("ff02::1:2");
3 SmartPtr<TIPv6Addr> tmp;
4 if (!tmp) cout << "Null pointer" << endl;
5 tmp = addr;

Dibbler – a portable DHCPv6 Developer’s Guide 11

6 std::cout << addr->getPlain();
7 }

What’s happened in those lines?

1 – Function starts.

2 – New TIPv6Addr object is created. Smart Pointer (SmartPtr<TIPv6Addr>) is also created to point
at this object. Using normal pointer to achive the same goal would look like this:
TIPv6Addr * addr = new TIPv6Addr("ff02::1:2");

3 – Another pointer is created. It is equivalent of the classical pointer (TIPv6Addr * tmp).

4 – Simple check if pointer does not point to anything.

5 – Smart pointers can be coppied in a easy way.

6 – Using object pointed by smart pointer is simple

7 – Here magic begins. addr and tmp are local variables, so they are destroyed here. But they are the
only smart pointers which access TIPv6Addr object. So they are destroy that object.

In conclusion, object remain in memory as long as there is at least one smart pointer which points to
this object. SmartPointers can be easily derefernced. Just add * before them:

cout << *addr << endl;

SmartPtrs are often used to store various objects in a list. Cool part of this solution is that you can
hold objects of various derived classes on one list in a very comfortable manner. There is an additional
template defined to create and manipulate such lists. It is called TContainer. There’s also useful macro
defined to use this without typing too much. Here are two examples how to define list of addresses (both
mean exactly the same):

TContainer< SmartPtr<TIPvAddr> > addrLst;
List(TIPv6Addr) addrLst;

How to use this list? Oh well, another example:

1 List(TIPv6Addr) addrLst;
2 SmartPtr<TIPv6Addr> ptr = ...;
3 SmartPtr<TIPv6Addr> tmp;
4 addrLst.clear();
5 addrLst.append(ptr);
6 addrLst.first();
7 tmp = addrLst.get();
8 cout << "List contains " << addrLst.count() << " elements" << endl;
9 addrLst.first();
10 while (tmp = addrLst.get())
11 cout << *tmp << endl;

And here is description what that code does:

1 – Address list declaration.

2,3 – SmartPtrs declarations. Just to show variable types.

Dibbler – a portable DHCPv6 Developer’s Guide 12

4 – List can be cleared. All pointers will be destroyed. If they were only pointers to point to some objects,
those objects will be destroyed, too.

5 – Append object pointed by ptr to the list.

6 – Rewind list to the beginning.

7 – Get next object from the list. If list is empty or last element was already got, NULL is returned.

8 – An easy way to count elements on the list.

9 – Rewind list to the beginning.

10,11 – A cute example how to print all addresses on the list.

5.3 Logging

To log various informations, Log(LOGLEVEL) macros are defined. There are eight levels of logging:

Emergency – Used to report system wide emergency. Such conditions could not occur in the DHCPv6
client o server, so this logging level should not be used. Called with Log(Emerg) << "..." << LogEnd.

Alert – Used to alert an administrator about system wide alerts. This logging level should not be used
in DHCPv6. Called with Log(Alert) << "..." << LogEnd.

Critical – Used in situations critical to the application, e.g. application shutdown. Fatal errors should
be logged on this level. Called with Log(Crit) << "..." << LogEnd.

Error – Used to report error situations. For example, problems with binding sockets. Called with
Log(Error) << "..." << LogEnd.

Warning – Used to report RFC violations, e.g. missing required options, invalid parameters and so on.
Called with Log(Warning) << "..." << LogEnd.

Notice – Used to report normal operations, e.g. address assignement or informations about received
options. Called with Log(Notice) << "..." << LogEnd.

Info – Used to report detailed information. DHCPv6 protocol knowledge might be needed to understand
those messages. Called with Log(Info) << "..." << LogEnd.

Debug – Used to report internal informations. Knowledge about Dibbler source code might be needed
to understand those messages. Called with Log(Debug) << "..." << LogEnd.

5.4 Names and prefixes

To avoid confussion, various prefixes are used in class and variable names. Class types begin with T
(e.g. address class would be named TAddr), enumeration types begin with E (e.g. state enumaterion
would be names EState). Dibbler is divided into 4 large functional blocks called managers3: address
maganger, interface manager, Configuration manager, and transmsission manager. Each of them uses
different prefix: Addr, Iface, Cfg or Trans. There are also objects shared among them: messages (Msg
prefix) and options (Opt prefix). Often there are two derived versions: related to client (Clnt prefix) or
related to server (Clnt). Rel prefix is used to denote Relay related classes. Here are examples of some
class names:

TAddrMgr – Address manager, common version.
3They are described in the following sections of this document

Dibbler – a portable DHCPv6 Developer’s Guide 13

TClntAddrMgr – Address manager, client version.

TAddrIface – Interface representation, used in address manager.

TAddrAddr – Address representation used in address manager.

TSrvIfaceMgr – Interface manager, server version.

TClntIfaceIface – Interface representation used in client interface manager.

TClntMsg – Message represented on the client side.

TClntOptPreference – Prefernce option used on the client side.

TIfaceSocket – Socket used in the interface manager.

TClntCfgAddr – Address used in the client config manager.

Also note that class function names start with small letters (e.g. bool TOpt::isValid();) and class
variables start with capital letters (e.g. bool TOpt::IsValid;).

5.5 Configuration file parsers

Note: Similar approach is used in server, client and relay. In following section when reference to a
specific file is needed, client files are used. To find corresponding files related to server and relay, substitute
Clnt with Srv or Rel.

Dibbler uses standard lexer/parser. Lexer is generated using flex. Parser is generated with bison++
(full source code for bison++ is provided with Dibbler sources). See ClntCfgMgr/ClntParser.y and
ClntCfgMgr/ClntLexer.l for details. Make sure that you have flex installed (bison++ is provided with the
dibbler source code). To generate parser and lexer code, type:

make bison (just once, to compile bison++)
make parser (each time you modify *.l or *.y files)

5.5.1 Parsing

Configuration file reading is done using Flex and bison++ tools. Flex is so called lexer. Its responsi-
bility is to read config file and translate it into stream of tokens. 4 For example, this config file:

iface eth0 {
class { pool 2000::1-2000::9 }

}

would be translated to following stream of tokens: [IFACE] [STRING:eth0] [] [CLASS] [] [POOL]
[ADDR:2000::1] [-] [ADDR:2000::9] [] []. This stream of token is then passed to parser. This parser is
generated by bison++. Parser checks if that particular sequence of tokens makes sense. In this example,
interface object will be created, which contains one class object, which contains one pool.

Is is sometimes very useful to define some parameter, usually associated with some level, on higher
scope level. For example, if there are 3 classes, instead of defining the same valid-lifetime value on each of
them, that parameter may be defined on the interface level or even at the top level. This is important to
remember during parsing. Each subsequent element must inherit its parent properties (class object must
inherit parameter values defined on the interface level).

To accomplish this feat, simple stack was implemented. For example, in server parser, following
methods are called before and after interface definitions.

4To be precise, Flex generates lexers, so it should be called lexer generator.

Dibbler – a portable DHCPv6 Developer’s Guide 14

void SrvParser::StartIfaceDeclaration()
{

// create new option (representing this interface) on the parser stack
ParserOptStack.append(new TSrvParsGlobalOpt(*ParserOptStack.getLast()));
SrvCfgAddrClassLst.clear();

}

bool SrvParser::EndIfaceDeclaration()
{

// create and add new interface to SrvCfgMgr
...
// remove last option (representing this interface) from the parser stack
ParserOptStack.delLast();
return true;

}

5.5.2 Using parsed values

Lexer and parser are created in the Client Configuration Manager. See ClntCfgMgr/ClntCfgMgr.cpp.
Following code is executed in the ClntCfgMgr constructor5

yyFlexLexer lexer(\&f,\&clog);
ClntParser parser(\&lexer);
result = parser.yyparse();
matchParsedSystemInterfaces(\&parser);
validateConfig();

f and clog are normal C++ ifstream and ofstrem objects, associated with configuration file or a standard
output. Configuration file is passed to the constructor of the entire TDHCPClient object, which is usually
located in the main() function.

Example mentioned above works as follows:

• Read all interfaces from the system (using System API). This is done in Interface Manager and is
not important right now.

• Create lexer object (it will read configuration file and convert it into stream of tokens)

• create parser, which will interpret stream of tokens.

• Match interfaces present in system with those specified in the configuration file.

• Validate configuration file to check if there are no logical errors, like T1¿T2, specified both stateless
and request for ia, etc.

5.5.3 Embedded configuration

Note: This feature applies to the client only.
Another way of defining client configuration was introduced in the 0.5.0 release. Instead of reading con-

figuration file, configuration can be hardcoded in the binary file itself. See MOD CLNT EMBEDDED CFG
flag description in section 2.8.

5Actual code is much more complicated, but unnecessary lines were removed for a clarification reasons.

Dibbler – a portable DHCPv6 Developer’s Guide 15

6 Architecture

General architecture is common between server, client and (to some extent) relay. In all cases, classes
are divided into several major groups:

IfaceMgr – Interface Manager. It represents all network interfaces present in the system. They’re
represented by TIfaceIface objects and stored in IfaceLst. Each interface has list of open sockets,
represented with TIfaceSocket objects. There are also a number of auxiliary functions for getting
proper interface. IfaceIface objects also provide methods to add, update and remove addresses.

AddrMgr – Address Manager. It is an address database, which stores all informations about clients,
IAs and associated addresses.

CfgMgr – Config Manager. It is being used to read configuration information from config file and provide
those informations while runtime. Common mechanisms shared between server and client are scarce,
so this base class is almost empty.

TransMgr – Transmission Manager, sometimes called Transaction Manager. It is responsible for network
interaction and core DHCPv6 logic. It sends various messages when such need arise, matches received
responses with sent messages, retransmits messages etc. It contains list of messages currently being
trasmitted.

Messages – There is one parent class of all messages. It contains several basic functionalites common to
all messages.

Options – There are multiple option classes. Note that some classes are designed to represent one specific
option (e.g. OptIAAddress) and other are not (e.g. OptAddrLst can contain address list, so it can
be used as DNS Resolvers, SIP servers o NIS servers option).

Misc – This cathegory (or rather directory) contains various miscellanous classes and functions.

None of those classes is used directly. Client, server and relay uses derived classes.
They are all created within DHCPClient or DHCPServer objects in client or server, respectively.

DHCPRelay object will perform similar function for relays.

6.1 Client Architecture

Client is represented by a DHCPClient object. It contains 4 large managers, each with its own
functions. Also messages and options are defined:

TClntIfaceMgr – contains client version of the IfaceMgr. Major difference is a TClntIfaceIface class,
an enhanced version of the IfaceIface. It provides methods to set up various options on the physical
interface. Those methods are used by Options representing options.

TClntAddrMgr – Client version supports additional, client related functions, e.g. tentative timeout
used in DAD procedure. It also simplifies database handling as there will always be only one client
in the database.

TClntCfgMgr – Client related parser. TClntCfgMgr and related objects are designed to provide easy
access to parameters specified in the configuration file. ClntCfgIface is a very important class as
most of the parameters is interface-specific.

TClntTransMgr – Core logic of the Client. It uses all other managers to decide what actions should be
taken at occuring circumstances, e.g. send REQUEST when there are less addresses assigned than
specified in the configuration file.

Dibbler – a portable DHCPv6 Developer’s Guide 16

TClntMsg – All messages have client specific classes. Those objects are created as new messages are
being sent. After server message reception, object is also created and passed to the original message.
For example, client sends SOLICIT message and server send ADVERTISE message. Reply
will be passed by invoking answer(msgAdvertise) method on the msgSolicit object.

TClntOpt – There are client specific options defined. Each of those options has doDuties() method
which is called if this option was received in a proper reply message from the server. It calls
appropriate methods in TClntIfagrMgr which set specific options in the system.

6.2 Server Architecture

Server is represented by a DHCPServer object. It contains 4 large managers, each with its own
functions. Also SrvMessages and SrvOptions are defined:

TSrvIfaceMgr – contains server version of the IfaceMgr. There are almost no modificiation compared
to common version.

TSrvAddrMgr – Client version supports additional, client related functions, e.g. tentative timeout used
in DAD procedure. It also simplifies database handling as there will always be only one client in the
database.

TSrvCfgMgr – Client related parser. TSrvCfgMgr and related objects are designed to provide easy
access to parameters specified in the configuration file. SrvCfgIface is a very important class as most
of the parameters is interface-specific.

TSrvTransMgr – Core logic of the client. It uses all other managers to decide what actions should be
taken at occuring circumstances, e.g. send REQUEST when there are less addresses assigned than
specified in the configuration file.

TSrvMsg – Server version of the messages. Each time server receives a message, TSrvMsg is created.
Depending of its type, TSrvAdvertise of TSrvReply message is created. As parameter to its con-
tructor original message is passed. After creating message, it is sent back to the client and stored
for possible retransmission purposes.

TSrvOpt – Server version of the Option representing objects. They are just used to store data, so they
are considerably simpler than client versions.

6.3 Relay Architecture

Preliminary relay version was available in the 0.4.0 release. It consists of serveral simple blocks:

TRelIfaceMgr – contains relayr version of the IfaceMgr. There are almost no modificiation compared
to common version, execept decodeMsg() and decodeRelayRepl() methods.

TRelCfgMgr – Relay related parser. TRelCfgMgr and related objects are designed to provide easy
access to parameters specified in the configuration file. RelCfgIface is a very important class as most
of the parameters is interface-specific.

TRelTransMgr – It’s plain simple manager. It’s only function is to relay received message on all
interfaces.

TRelMsg – From the relay’s point of view, all messages fall to one of 3 categories: Generic (i.e. not
encapsulated) messages, RelayForw (already forwarded by some other relay) and RelayRepl (replies
from server). Most of the messages is threated as generic message.

Dibbler – a portable DHCPv6 Developer’s Guide 17

TRelOpt – Similar approach is used to handle options. Expect RELAY MSG option (which contains
relayed message) and interface-id option (which contains identifier of the interface), all options are
threated as generic options, which are handled transparently.

7 Dibbler debugging

This section specifies, which tools can be used to debug Dibbler and generally aid in the software
process development.

7.1 Valgrind

Execute dibbler with the following command: valgrind –tool=memcheck –show-reachable=yes –leak-
check=full ./dibbler-client run

8 FAQ

This section describes various Dibbler aspects.

XML files – After performing any action, server, client and relay store their internal information into
XML files. As for 0.4.1 version, those files are never read, just written. This feature can be used as
a debugging tool. However, it’s main purpose is the ability to process and present internal state in
some external form. For example using with css styles or after processing via XSLT parsers, server
statistics can be presented as a web page.

Message building – Each TMsg object (see Messages/Msg.h) has Options list. Options (TOpt derived
objects) are created (usually in the constructor). They’re stored as objects. For good example,
see appendRequestedOptions() method in the client messages (ClntMessages/ClntMsg.cpp). Each
option and message has method storeSelf(), which is called just before message is being sent.
You might ask: what about retransmissions? Message is built each time it is being resent. That
might seem inefficient, but there is one option called Estimated. It specifies how long does this
particular transaction is being processed. So each time retrasmission is in fact a slightly different
message. It differs in that option, so UDP checksum is different, so it has to be rebuilt.

9 Tips

• Linux: Running client and server on the same host requires client recompilation with specific option
enabled. Please edit misc/Portable.h and set CLIENT_BIND_REUSE to true. This will allow to
receive data from local server, but will also disable checking if there is another client running. So
you can run multiple clients, which is a straight road to trouble. You were warned.

• Ethereal, a widely used network sniffer/analyzer has a bug with parsing DHCPv6 message: SIP
options are always reported as malformed. Also NIS/NIS+ options have improper values (not
comformant to RFC3898). To work around that problem, download packet-dhcpv6.c from Dibbler
homepage and recompile Ethereal. Dibbler’s author sent patches to the Ethereal team. Those
changes should be included in the next Ethereal release. NOTE: This is no longer true. Patch was
accepted and now Ethereal prints informations properly.

• If you are reading this Developer’s Guide, then Hey! You’re probably a developer! If you found any
bugs (or think you found one), go to the http://klub.com.pl/bugzilla and report it. If your report
was a mistake – oh well, you just lost 5 minutes. But if it was really a bug, you have just helped
improve next Dibbler version.

http://klub.com.pl/bugzilla

Dibbler – a portable DHCPv6 Developer’s Guide 18

• If you have any questions about Dibbler or DHCPv6, feel free to mail me, preferably via Dibbler
mailing list. All links are provided on the project website.

Dibbler – a portable DHCPv6 Developer’s Guide 19

References

[1] Mills, D., “Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI”, RFC2030,
IETF, October 1996.

[2] T. Narten, E. Nordmark and W. Simpson “Neighbor Discovery for IP Version 6 (IPv6)”, RFC2461,
December 1998.

[3] S. Thomson, and T. Narten “IPv6 Stateless Address Autoconfiguration”, RFC2462, IETF, December
1998.

[4] J.Rosenberg and H. Schulzrinne, “Session Initiation Protocol (SIP): Locating SIP Servers”, RFC3263,
IETF, June 2002.

[5] R. Droms, Ed. “Dynamic Host Configuration Protocol for IPv6 (DHCPv6)”, RFC3315, IETF, July
2003.

[6] H. Schulzrinne, and B. Volz “Dynamic Host Configuration Protocol (DHCPv6) Options for Session
Initiation Protocol (SIP) Servers”, RFC3319, IETF, July 2003.

[7] S. Thomson, C. Huitema, V. Ksinant and M. Souissi “DNS Extensions to Support IP Version 6”,
RFC3596, IETF, October 2003.

[8] O. Troan, and R. Droms “IPv6 Prefix Options for Dynamic Host Configuration Protocol (DHCP)
version 6”, RFC3633, IETF, December 2003.

[9] R. Droms, Ed. “DNS Configuration options for Dynamic Host Configuration Protocol for IPv6
(DHCPv6)”, RFC3646, IETF, December 2003.

[10] R. Droms, “Stateless Dynamic Host Configuration Protocol (DHCP) Service for IPv6”, RFC3736,
IETF, April 2004.

[11] V. Kalusivalingam “Network Information Service (NIS) Configuration Options for Dynamic Host
Configuration Protocol for IPv6 (DHCPv6)”, RFC3898, IETF, October 2004.

[12] R. Arends, R. Austein, M. Larson, D. Massey and S. Rose “DNS Security Introduction and Require-
ments”, RFC4033, IETF, March 2005

[13] V. Kalusivalingam “Simple Network Time Protocol (SNTP) Configuration Option for DHCPv6”,
RFC4075, IETF, May 2005.

[14] M. Stapp and B.Volz “The Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Client Fully
Qualified Domain Name (FQDN) Option”, RFC4704, IETF, October 2006

[15] S. Venaas, T. Chown, and B. Volz “Information Refresh Time Option for DHCPv6”, work in progress,
IETF, January 2005, draft-ietf-dhc-lifetime-03.txt.

[16] A.K. Vijayabhaskar “Time Configuration Options for DHCPv6”, work in progress, IETF, October
2003, draft-ietf-dhc-dhcpv6-opt-timeconfig-03.txt.

http://tools.ietf.org/html/rfc2030
http://tools.ietf.org/html/rfc2461
http://tools.ietf.org/html/rfc2462
http://tools.ietf.org/html/rfc3263
http://tools.ietf.org/html/rfc3315
http://tools.ietf.org/html/rfc3319
http://tools.ietf.org/html/rfc3596
http://tools.ietf.org/html/rfc3633
http://tools.ietf.org/html/rfc3646
http://tools.ietf.org/html/rfc3736
http://tools.ietf.org/html/rfc3898
http://tools.ietf.org/html/rfc4033
http://tools.ietf.org/html/rfc4075
http://tools.ietf.org/html/rfc4704

	Intro
	Compilation
	Linux
	Windows
	Flex/bison under Windows

	DEB and RPM Packages
	Ebuild script for Gentoo
	Dibbler in Linux distributions
	Compilation environment
	Changing default values
	Modular features
	Cross-compilation

	Portability Guide
	Low-level System API

	General information
	Release cycle
	Documentation
	Memory/CPU usage

	Basic source code informations
	Option values and filenames
	Memory Management using SmartPtr
	Logging
	Names and prefixes
	Configuration file parsers
	Parsing
	Using parsed values
	Embedded configuration

	Architecture
	Client Architecture
	Server Architecture
	Relay Architecture

	Dibbler debugging
	Valgrind

	FAQ
	Tips
	Bibliography

