/* * Xen SMP support * * This file implements the Xen versions of smp_ops. SMP under Xen is * very straightforward. Bringing a CPU up is simply a matter of * loading its initial context and setting it running. * * IPIs are handled through the Xen event mechanism. * * Because virtual CPUs can be scheduled onto any real CPU, there's no * useful topology information for the kernel to make use of. As a * result, all CPUs are treated as if they're single-core and * single-threaded. * * This does not handle HOTPLUG_CPU yet. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "xen-ops.h" #include "mmu.h" static void __cpuinit xen_init_lock_cpu(int cpu); cpumask_t xen_cpu_initialized_map; static DEFINE_PER_CPU(int, resched_irq); static DEFINE_PER_CPU(int, callfunc_irq); static DEFINE_PER_CPU(int, callfuncsingle_irq); static DEFINE_PER_CPU(int, debug_irq) = -1; static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id); static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id); /* * Reschedule call back. Nothing to do, * all the work is done automatically when * we return from the interrupt. */ static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id) { #ifdef CONFIG_X86_32 __get_cpu_var(irq_stat).irq_resched_count++; #else add_pda(irq_resched_count, 1); #endif return IRQ_HANDLED; } static __cpuinit void cpu_bringup_and_idle(void) { int cpu = smp_processor_id(); cpu_init(); preempt_disable(); xen_enable_sysenter(); xen_enable_syscall(); cpu = smp_processor_id(); smp_store_cpu_info(cpu); cpu_data(cpu).x86_max_cores = 1; set_cpu_sibling_map(cpu); xen_setup_cpu_clockevents(); cpu_set(cpu, cpu_online_map); x86_write_percpu(cpu_state, CPU_ONLINE); wmb(); /* We can take interrupts now: we're officially "up". */ local_irq_enable(); wmb(); /* make sure everything is out */ cpu_idle(); } static int xen_smp_intr_init(unsigned int cpu) { int rc; const char *resched_name, *callfunc_name, *debug_name; resched_name = kasprintf(GFP_KERNEL, "resched%d", cpu); rc = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR, cpu, xen_reschedule_interrupt, IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING, resched_name, NULL); if (rc < 0) goto fail; per_cpu(resched_irq, cpu) = rc; callfunc_name = kasprintf(GFP_KERNEL, "callfunc%d", cpu); rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_VECTOR, cpu, xen_call_function_interrupt, IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING, callfunc_name, NULL); if (rc < 0) goto fail; per_cpu(callfunc_irq, cpu) = rc; debug_name = kasprintf(GFP_KERNEL, "debug%d", cpu); rc = bind_virq_to_irqhandler(VIRQ_DEBUG, cpu, xen_debug_interrupt, IRQF_DISABLED | IRQF_PERCPU | IRQF_NOBALANCING, debug_name, NULL); if (rc < 0) goto fail; per_cpu(debug_irq, cpu) = rc; callfunc_name = kasprintf(GFP_KERNEL, "callfuncsingle%d", cpu); rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_SINGLE_VECTOR, cpu, xen_call_function_single_interrupt, IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING, callfunc_name, NULL); if (rc < 0) goto fail; per_cpu(callfuncsingle_irq, cpu) = rc; return 0; fail: if (per_cpu(resched_irq, cpu) >= 0) unbind_from_irqhandler(per_cpu(resched_irq, cpu), NULL); if (per_cpu(callfunc_irq, cpu) >= 0) unbind_from_irqhandler(per_cpu(callfunc_irq, cpu), NULL); if (per_cpu(debug_irq, cpu) >= 0) unbind_from_irqhandler(per_cpu(debug_irq, cpu), NULL); if (per_cpu(callfuncsingle_irq, cpu) >= 0) unbind_from_irqhandler(per_cpu(callfuncsingle_irq, cpu), NULL); return rc; } static void __init xen_fill_possible_map(void) { int i, rc; for (i = 0; i < NR_CPUS; i++) { rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL); if (rc >= 0) { num_processors++; cpu_set(i, cpu_possible_map); } } } static void __init xen_smp_prepare_boot_cpu(void) { BUG_ON(smp_processor_id() != 0); native_smp_prepare_boot_cpu(); /* We've switched to the "real" per-cpu gdt, so make sure the old memory can be recycled */ make_lowmem_page_readwrite(&per_cpu_var(gdt_page)); xen_setup_vcpu_info_placement(); } static void __init xen_smp_prepare_cpus(unsigned int max_cpus) { unsigned cpu; xen_init_lock_cpu(0); smp_store_cpu_info(0); cpu_data(0).x86_max_cores = 1; set_cpu_sibling_map(0); if (xen_smp_intr_init(0)) BUG(); xen_cpu_initialized_map = cpumask_of_cpu(0); /* Restrict the possible_map according to max_cpus. */ while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) { for (cpu = NR_CPUS - 1; !cpu_possible(cpu); cpu--) continue; cpu_clear(cpu, cpu_possible_map); } for_each_possible_cpu (cpu) { struct task_struct *idle; if (cpu == 0) continue; idle = fork_idle(cpu); if (IS_ERR(idle)) panic("failed fork for CPU %d", cpu); cpu_set(cpu, cpu_present_map); } //init_xenbus_allowed_cpumask(); } static __cpuinit int cpu_initialize_context(unsigned int cpu, struct task_struct *idle) { struct vcpu_guest_context *ctxt; struct desc_struct *gdt; if (cpu_test_and_set(cpu, xen_cpu_initialized_map)) return 0; ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); if (ctxt == NULL) return -ENOMEM; gdt = get_cpu_gdt_table(cpu); ctxt->flags = VGCF_IN_KERNEL; ctxt->user_regs.ds = __USER_DS; ctxt->user_regs.es = __USER_DS; ctxt->user_regs.ss = __KERNEL_DS; #ifdef CONFIG_X86_32 ctxt->user_regs.fs = __KERNEL_PERCPU; #endif ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle; ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */ memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt)); xen_copy_trap_info(ctxt->trap_ctxt); ctxt->ldt_ents = 0; BUG_ON((unsigned long)gdt & ~PAGE_MASK); make_lowmem_page_readonly(gdt); ctxt->gdt_frames[0] = virt_to_mfn(gdt); ctxt->gdt_ents = GDT_ENTRIES; ctxt->user_regs.cs = __KERNEL_CS; ctxt->user_regs.esp = idle->thread.sp0 - sizeof(struct pt_regs); ctxt->kernel_ss = __KERNEL_DS; ctxt->kernel_sp = idle->thread.sp0; #ifdef CONFIG_X86_32 ctxt->event_callback_cs = __KERNEL_CS; ctxt->failsafe_callback_cs = __KERNEL_CS; #endif ctxt->event_callback_eip = (unsigned long)xen_hypervisor_callback; ctxt->failsafe_callback_eip = (unsigned long)xen_failsafe_callback; per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir); ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_mfn(swapper_pg_dir)); if (HYPERVISOR_vcpu_op(VCPUOP_initialise, cpu, ctxt)) BUG(); kfree(ctxt); return 0; } static int __cpuinit xen_cpu_up(unsigned int cpu) { struct task_struct *idle = idle_task(cpu); int rc; #if 0 rc = cpu_up_check(cpu); if (rc) return rc; #endif #ifdef CONFIG_X86_64 /* Allocate node local memory for AP pdas */ WARN_ON(cpu == 0); if (cpu > 0) { rc = get_local_pda(cpu); if (rc) return rc; } #endif #ifdef CONFIG_X86_32 init_gdt(cpu); per_cpu(current_task, cpu) = idle; irq_ctx_init(cpu); #else cpu_pda(cpu)->pcurrent = idle; clear_tsk_thread_flag(idle, TIF_FORK); #endif xen_setup_timer(cpu); xen_init_lock_cpu(cpu); per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; /* make sure interrupts start blocked */ per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1; rc = cpu_initialize_context(cpu, idle); if (rc) return rc; if (num_online_cpus() == 1) alternatives_smp_switch(1); rc = xen_smp_intr_init(cpu); if (rc) return rc; rc = HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL); BUG_ON(rc); while(per_cpu(cpu_state, cpu) != CPU_ONLINE) { HYPERVISOR_sched_op(SCHEDOP_yield, 0); barrier(); } return 0; } static void xen_smp_cpus_done(unsigned int max_cpus) { } static void stop_self(void *v) { int cpu = smp_processor_id(); /* make sure we're not pinning something down */ load_cr3(swapper_pg_dir); /* should set up a minimal gdt */ HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL); BUG(); } static void xen_smp_send_stop(void) { smp_call_function(stop_self, NULL, 0); } static void xen_smp_send_reschedule(int cpu) { xen_send_IPI_one(cpu, XEN_RESCHEDULE_VECTOR); } static void xen_send_IPI_mask(cpumask_t mask, enum ipi_vector vector) { unsigned cpu; cpus_and(mask, mask, cpu_online_map); for_each_cpu_mask_nr(cpu, mask) xen_send_IPI_one(cpu, vector); } static void xen_smp_send_call_function_ipi(cpumask_t mask) { int cpu; xen_send_IPI_mask(mask, XEN_CALL_FUNCTION_VECTOR); /* Make sure other vcpus get a chance to run if they need to. */ for_each_cpu_mask_nr(cpu, mask) { if (xen_vcpu_stolen(cpu)) { HYPERVISOR_sched_op(SCHEDOP_yield, 0); break; } } } static void xen_smp_send_call_function_single_ipi(int cpu) { xen_send_IPI_mask(cpumask_of_cpu(cpu), XEN_CALL_FUNCTION_SINGLE_VECTOR); } static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id) { irq_enter(); generic_smp_call_function_interrupt(); #ifdef CONFIG_X86_32 __get_cpu_var(irq_stat).irq_call_count++; #else add_pda(irq_call_count, 1); #endif irq_exit(); return IRQ_HANDLED; } static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id) { irq_enter(); generic_smp_call_function_single_interrupt(); #ifdef CONFIG_X86_32 __get_cpu_var(irq_stat).irq_call_count++; #else add_pda(irq_call_count, 1); #endif irq_exit(); return IRQ_HANDLED; } struct xen_spinlock { unsigned char lock; /* 0 -> free; 1 -> locked */ unsigned short spinners; /* count of waiting cpus */ }; static int xen_spin_is_locked(struct raw_spinlock *lock) { struct xen_spinlock *xl = (struct xen_spinlock *)lock; return xl->lock != 0; } static int xen_spin_is_contended(struct raw_spinlock *lock) { struct xen_spinlock *xl = (struct xen_spinlock *)lock; /* Not strictly true; this is only the count of contended lock-takers entering the slow path. */ return xl->spinners != 0; } static int xen_spin_trylock(struct raw_spinlock *lock) { struct xen_spinlock *xl = (struct xen_spinlock *)lock; u8 old = 1; asm("xchgb %b0,%1" : "+q" (old), "+m" (xl->lock) : : "memory"); return old == 0; } static DEFINE_PER_CPU(int, lock_kicker_irq) = -1; static DEFINE_PER_CPU(struct xen_spinlock *, lock_spinners); static inline void spinning_lock(struct xen_spinlock *xl) { __get_cpu_var(lock_spinners) = xl; wmb(); /* set lock of interest before count */ asm(LOCK_PREFIX " incw %0" : "+m" (xl->spinners) : : "memory"); } static inline void unspinning_lock(struct xen_spinlock *xl) { asm(LOCK_PREFIX " decw %0" : "+m" (xl->spinners) : : "memory"); wmb(); /* decrement count before clearing lock */ __get_cpu_var(lock_spinners) = NULL; } static noinline int xen_spin_lock_slow(struct raw_spinlock *lock) { struct xen_spinlock *xl = (struct xen_spinlock *)lock; int irq = __get_cpu_var(lock_kicker_irq); int ret; /* If kicker interrupts not initialized yet, just spin */ if (irq == -1) return 0; /* announce we're spinning */ spinning_lock(xl); /* clear pending */ xen_clear_irq_pending(irq); /* check again make sure it didn't become free while we weren't looking */ ret = xen_spin_trylock(lock); if (ret) goto out; /* block until irq becomes pending */ xen_poll_irq(irq); kstat_this_cpu.irqs[irq]++; out: unspinning_lock(xl); return ret; } static void xen_spin_lock(struct raw_spinlock *lock) { struct xen_spinlock *xl = (struct xen_spinlock *)lock; int timeout; u8 oldval; do { timeout = 1 << 10; asm("1: xchgb %1,%0\n" " testb %1,%1\n" " jz 3f\n" "2: rep;nop\n" " cmpb $0,%0\n" " je 1b\n" " dec %2\n" " jnz 2b\n" "3:\n" : "+m" (xl->lock), "=q" (oldval), "+r" (timeout) : "1" (1) : "memory"); } while (unlikely(oldval != 0 && !xen_spin_lock_slow(lock))); } static noinline void xen_spin_unlock_slow(struct xen_spinlock *xl) { int cpu; for_each_online_cpu(cpu) { /* XXX should mix up next cpu selection */ if (per_cpu(lock_spinners, cpu) == xl) { xen_send_IPI_one(cpu, XEN_SPIN_UNLOCK_VECTOR); break; } } } static void xen_spin_unlock(struct raw_spinlock *lock) { struct xen_spinlock *xl = (struct xen_spinlock *)lock; smp_wmb(); /* make sure no writes get moved after unlock */ xl->lock = 0; /* release lock */ /* make sure unlock happens before kick */ barrier(); if (unlikely(xl->spinners)) xen_spin_unlock_slow(xl); } static __cpuinit void xen_init_lock_cpu(int cpu) { int irq; const char *name; name = kasprintf(GFP_KERNEL, "spinlock%d", cpu); irq = bind_ipi_to_irqhandler(XEN_SPIN_UNLOCK_VECTOR, cpu, xen_reschedule_interrupt, IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING, name, NULL); if (irq >= 0) { disable_irq(irq); /* make sure it's never delivered */ per_cpu(lock_kicker_irq, cpu) = irq; } printk("cpu %d spinlock event irq %d\n", cpu, irq); } static void __init xen_init_spinlocks(void) { pv_lock_ops.spin_is_locked = xen_spin_is_locked; pv_lock_ops.spin_is_contended = xen_spin_is_contended; pv_lock_ops.spin_lock = xen_spin_lock; pv_lock_ops.spin_trylock = xen_spin_trylock; pv_lock_ops.spin_unlock = xen_spin_unlock; } static const struct smp_ops xen_smp_ops __initdata = { .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu, .smp_prepare_cpus = xen_smp_prepare_cpus, .cpu_up = xen_cpu_up, .smp_cpus_done = xen_smp_cpus_done, .smp_send_stop = xen_smp_send_stop, .smp_send_reschedule = xen_smp_send_reschedule, .send_call_func_ipi = xen_smp_send_call_function_ipi, .send_call_func_single_ipi = xen_smp_send_call_function_single_ipi, }; void __init xen_smp_init(void) { smp_ops = xen_smp_ops; xen_fill_possible_map(); xen_init_spinlocks(); }